The Non-Renewable Spaceship Friday Forum

James A. Rising

Columbia SIPA

October 21, 2011

Ongoing Projects

spinner tools syllabus methods of thought agu open model soc -¿ out -¿ health limeeffect sys reg toolbox extractor

The Inspiration

Spaceship Earth What would you take with you on a spaceship? The need to set aside some non-renewables, in case weak sustainability doesn't suffice.

Framing the Problem

The Ship

1: rectangle with area A, split into urban, ag, nature 2: roll it up into cylinder, with urban tower 3: add fossil fuel launcher on edges and bottom

$$R_w = \frac{V_p + V_a}{365.25 days} \implies V_w = NR_w T_w$$

V_p	water used by a person directly per year	5 <i>m</i> ³
V_a	water used by a person through agriculture per year	$3000 \ m^3$
T_w	time to process waste water	20 <i>day</i>
R_w	rate of water use by people	8.22 m^3/da
V_w	total volume of water onboard	1.645e5 m^3

Constants: V (volume of core), A (area of spiral) Variables: C (radius of core), R (radius of ship), L (length of spiral), W (width of ship), Θ (angular length of spiral)

$$A = WL$$

$$W = 2R$$

$$V = \pi C^{2}W$$

$$r(\theta) = \frac{H\theta}{2\pi} + C$$

$$R = r(\Theta)$$

$$L = \int_{0}^{\Theta} r(theta)d\theta$$

$$L = \frac{A \left(RootOf\left(\left(4 AH\pi^2 + 4 V\pi^2\right) Z^6 - V^3\right)\right)^2 \pi}{V}$$

To calculate

move water to center? or build nuclear power plant at center (for weight and heat) calc gravity (+ centripital) at diff distances split up energy from nukes into heat, light, work

What's Missing

building costs and infrastructure maintenance workers and their equipment